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A B S T R A C T

Whereas deep neural network (DNN) is increasingly applied to choice analysis, it is challenging
to reconcile domain-specific behavioral knowledge with generic-purpose DNN, to improve DNN’s
interpretability and predictive power, and to identify effective regularization methods for specific
tasks. To address these challenges, this study demonstrates the use of behavioral knowledge for
designing a particular DNN architecture with alternative-specific utility functions (ASU-DNN)
and thereby improving both the predictive power and interpretability. Unlike a fully connected
DNN (F-DNN), which computes the utility value of an alternative k by using the attributes of all
the alternatives, ASU-DNN computes it by using only k’s own attributes. Theoretically, ASU-DNN
can substantially reduce the estimation error of F-DNN because of its lighter architecture and
sparser connectivity, although the constraint of alternative-specific utility can cause ASU-DNN to
exhibit a larger approximation error. Empirically, ASU-DNN has 2–3% higher prediction accu-
racy than F-DNN over the whole hyperparameter space in a private dataset collected in Singapore
and a public dataset available in the R mlogit package. The alternative-specific connectivity is
associated with the independence of irrelevant alternative (IIA) constraint, which as a domain-
knowledge-based regularization method is more effective than the most popular generic-purpose
explicit and implicit regularization methods and architectural hyperparameters. ASU-DNN pro-
vides a more regular substitution pattern of travel mode choices than F-DNN does, rendering
ASU-DNN more interpretable. The comparison between ASU-DNN and F-DNN also aids in testing
behavioral knowledge. Our results reveal that individuals are more likely to compute utility by
using an alternative’s own attributes, supporting the long-standing practice in choice modeling.
Overall, this study demonstrates that behavioral knowledge can guide the architecture design of
DNN, function as an effective domain-knowledge-based regularization method, and improve both
the interpretability and predictive power of DNN in choice analysis. Future studies can explore
the generalizability of ASU-DNN and other possibilities of using utility theory to design DNN
architectures.

1. Introduction

Choice analysis is an important research area across economics, transportation, and marketing (McFadden, 1974; Ben-Akiva and
Lerman, 1985; Guadagni and Little, 1983). Whereas discrete choice models were traditionally used to analyze this question, recently
researchers have become increasingly interested in applying machine learning (ML) methods such as deep neural network (DNN) to
analyze individual choices (Karlaftis and Vlahogianni, 2011; Paredes et al., 2017; Wang et al., 2018). While DNN has demonstrated
its extraordinary predictive power in the tasks such as image recognition and natural language processing, its application to demand
analysis is still hindered by at least three problems. First, as DNN gradually permeates into many domains, it is unclear how generic-
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purpose DNN classifiers can be reconciled with domain-specific knowledge (LeCun et al., 2015; Liao and Poggio, 2018). Whereas the
ML community generally admires the effectiveness of automatic feature learning in DNN (LeCun et al., 2015), heated debates
continue with regard to the extent and manner in which domain knowledge can be used to improve ML models and solve domain-
specific problems more efficiently (Liao and Poggio, 2018). Second, because DNN is a significantly more complicated generic-purpose
model, its interpretability is generally considered to be low (Lipton, 2016; Koh and Liang, 2017). Even though it is relatively
straightforward to apply DNN to forecast demand, researchers have obtained limited policy and behavioral insights from DNN until
now. Third, even the prediction itself can be challenging because of the high dimensionality and data overfitting of DNN. Effective
regularization methods and DNN architectures are important to improve the out-of-sample performance. Whereas many recent
progresses were achieved by creating novel DNN architectures, the procedure of designing deep architecture is still largely ad hoc
without systematic guidance (Zhang et al., 2016; Mhaskar et al., 2016). These three challenges, including the tension between
domain-specific and generic-purpose knowledge, lack of interpretability, and challenge of identifying effective regularization and
architecture, are theoretically important and empirically critical for applying DNN to any specific domain.

To address these problems, this study demonstrates the use of behavioral knowledge for designing a novel DNN architecture with alter-
native-specific utility functions (ASU-DNN), thereby improving both the predictive power and interpretability of DNN in choice analysis. We
first elaborate on the implicit interpretation of random utility maximization (RUM) in DNN, framing the question of DNN architecture
design as one of utility specification. This insight results in the design of the new ASU-DNN architecture, in which the utility of an
alternative depends only on its own attributes, as opposed to a fully connected DNN (F-DNN) in which the utility of each alternative is
the function of all the alternative-specific variables. Using statistical learning theory, we demonstrate that this ASU-DNN architecture
can reduce the estimation error of F-DNN thanks to its much sparser connectivity and fewer parameters, although the approximation
error of ASU-DNN could be higher. We then apply ASU-DNN, F-DNN, multinomial logit (MNL), nested logit (NL), and nine bench-
mark ML classifiers to predict travel mode choice by using two datasets, referred to as SGP and TRAIN in this study. The SGP dataset
was collected in Singapore in 2017, and the TRAIN dataset was from the mlogit package in R. Our results demonstrate that ASU-DNN
exhibits consistently higher prediction accuracy than F-DNN and the other eleven classifiers in predicting travel mode choice over the
whole hyperparameter space. The alternative-specific connectivity design in ASU-DNN leads to an IIA-constraint substitution pattern
across the alternatives, which can be considered as a domain-knowledge-based regularization, in contrast to the generic-purpose
regularization methods such as explicit and implicit regularizations and other architectural hyperparameters. Our results show that
the domain-knowledge-based regularization is more effective than the generic-purpose regularization in improving the prediction
performance. Finally, we interpret the substitution pattern across travel mode alternatives in ASU-DNN by using sensitivity analysis
and demonstrate that ASU-DNN reveals more reasonable behavioral patterns than F-DNN owing to its more regular and intuitive
choice probability functions. Overall, the behavioral knowledge of alternative-specific utility function can be used to partially address
all three challenges of DNN applications by integrating generic-purpose DNN and domain-specific behavioral knowledge, improving
the predictive power and interpretability of “black box” DNN, and functioning as an effective domain-knowledge-based regular-
ization.
Broadly speaking, this study points to a new research direction of injecting behavioral knowledge into DNN and enhancing DNN

architectures specifically for choice analysis. We aim to advance domain-specific behavioral knowledge using DNN, as opposed to
simply applying DNNs for prediction adopted by most recent studies in the transportation domain. This research direction is feasible
because the behavioral knowledge used in the classic choice models has a counterpart in the DNN architecture. Specifically, the
substitution pattern between alternatives can be controlled by the connectivity of the DNN architecture, and vice versa. From an ML
perspective, behavioral knowledge can function as domain-knowledge-based regularization, which better fits domain-specific tasks
than generic-purpose regularizations. The alternative-specific utility is only one small piece in the rich set of behavioral insights
accumulated over decades of transportation scholarship, and future studies can explore and create more noteworthy DNN archi-
tectures for choice analysis based on this behavioral perspective. To facilitate future research, we uploaded this work to a Github
repository: https://github.com/cjsyzwsh/ASU-DNN.git.
The paper is organized as follows: The next section reviews studies on DNN’s applications, interpretability, and regularization

methods. Section 3 examines three theoretical aspects of DNN: the relationship between RUM and DNN, architecture design of ASU-
DNN, and estimation and approximation error tradeoff between ASU-DNN and F-DNN. Section 4 presents the experiments, and
discusses the prediction accuracy, effectiveness of domain-knowledge-based regularization, and interpretability of ASU-DNN. Section
5 concludes.

2. Literature review

Individual decision-making has been an important topic in many domains, including marketing (Guadagni and Little, 1983),
economics (McFadden, 1974), transportation (Ben-Akiva and Lerman, 1985; Train, 2009), biology (Sham and Curtis, 1995), and
public policy (Borsch-Supan and Pitkin, 1988). In recent years as ML models permeated into these domains, researchers started to use
various classifiers to analyze how individuals take decisions (Paredes et al., 2017; Matthew, 2011). In the transportation domain,
Matthew (2011) summarized the transportation fields in which DNN models are used, including (1) traffic operations (such as traffic
forecasting and traffic pattern analysis); (2) infrastructure management and maintenance (such as pavement crack modeling and
intrusion detection); (3) transportation planning (such as in travel mode choice and route choice modeling); (4) environment and
transport (such as air pollution prediction); (5) safety and human behavior (such as accident analysis); and (6) air, transit, rail, and
freight operations. Recently, many studies applied SVM, decision tree (DT), RF, and DNN to predict travel behavior, automobile
ownership, traffic accidents, traffic flow, or even travelers’ decision rules (Pulugurta et al., 2013; Omrani, 2015; Ravi, 2016; Paredes
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et al., 2017; Cantarella and Luca, 2005; Nicholas, 2017; Liu and Chen, 2017; Zhang et al., 2018; van Cranenburgh and Alwosheel,
2019). However, nearly all of these studies apply certain generic-purpose ML models to solve domain-specific transportation pro-
blems, but none of them explored how domain-specific knowledge could be used to improve generic-purpose ML models for specific
tasks.
The balance between generic-purpose DNN classifiers and domain-specific knowledge is a general challenge to the application of

DNN to any specific domain. On the one hand, DNN is effective owing to its generic-purpose and automatic feature learning capacity
(LeCun et al., 2015; Bengio et al., 2013). For example, the hyperparameters and architecture in feedforward neural network such as
ReLU activation functions can be widely used regardless of the differences between natural language processing (NLP), image re-
cognition, and travel behavioral analysis (Krizhevsky et al., 2012; Cvpr et al., 2015). On the other hand, a few studies indicate that
handcrafted features could still aid in constructing DNN models (Liao and Poggio, 2018). In fact, certain domain-specific knowledge
is generally involved in DNN modeling. For example, the use of max pooling layer or data augmentation in CNN relies on our domain-
specific understanding of images, such as their invariance properties (Goodfellow et al., 2016).
Another challenge to DNN application is DNN’s lack of interpretability, which is caused by its complex model assumptions

(Lipton, 2016; Doshi-Velez and Kim, 2017). The interpretability of DNN is particularly important for reasons such as safety, trans-
parency, trust, and construction of new knowledge (Freitas, 2014; Brauneis and Goodman, 2017). The majority of the ML studies
applied to the transportation field focus exclusively on prediction, which is valid because ML models were initially designed for
prediction (Nijkamp et al., 1996; Rao et al., 1998; Xie et al., 2003; Omrani, 2015; Hagenauer and Helbich, 2017). Prediction-driven
ML models differ significantly from the classical choice models, which are both predictive and interpretable (McFadden, 1974).
However, to describe DNN as totally a “black-box” may be biased because many recent studies have demonstrated various methods of
interpreting DNN. These methods could be categorized broadly into two: ex-ante interpretation (Ribeiro et al., 2016) (which im-
proves interpretability before model building) and post hoc interpretation (which focuses on extracting information after model
training) (Doshi-Velez and Kim, 2017). For example, CNN can be interpreted in a post hoc manner by visualizing the semantic
contents in image recognition tasks (Zhou et al., 2014). In choice analysis, it appears feasible to post hoc interpret DNN and derive the
economic information from DNNs (Bentz and Merunka, 2000; Rao, 1998; Wang et al., 2018). Some other studies used the compu-
tational graphs to represent the travel demand structures (Xin et al., 2018; Sun et al., 2019). However, these studies that use the
visualization of computational graphs did not examine the connection between the utility theory that the choice modeling relies on
and the compositional structure of the hidden layers that is the hallmark of DNNs (Poggio et al., 2017), failing to take advantage of
either the function approximation capacity of DNNs or the rigorous behavioral insights captured in utility theories.
Even only for prediction, it is significantly challenging to design effective regularization methods and DNN architectures. The

regularization methods in DNN consist of explicit and implicit ones, and recent studies reveal that explicit regularizations such as l1
and l2 penalties may not effectively aid in the generalization of DNN (Zhang et al., 2016). New DNN architectures could also aid in
improving DNN performance. Recent studies either manually design new architectures (such as AlexNet (Krizhevsky et al., 2012),
GoogLeNet (Cvpr et al., 2015), and ResNet (He et al., 2016)) or automatically search for novel architectural design by using Gaussian
process, reinforcement learning, or other sequential modeling techniques (Snoek et al., 2015; Jozefowicz and Zaremba, 2015; Zoph
and Le, 2016; Falkner et al., 2018). However, most architecture designs are ad hoc explorations without systematic guidance, and the
final DNN architecture identified through automatic searching is not interpretable.

3. Theory

3.1. Random utility maximization and deep neural network

There are two types of inputs in choice modeling: alternative-specific variables xik and individual-specific variables zi. Using
travel mode choice as an example: xik could be the price of different travel modes, and zi represents individual characteristics, such as
income and education. …i N{1, 2, } is the individual index, and …k K{1, 2, } is the alternative index. Let = …B K{1, 2, } and

= …x x x[ , , ]i i
T

iK
T T

1 . The output of choice modeling is individual i’s choice, denoted as = …y y y y[ , , ]i i i iK1 2 . Each y {0, 1}ik and =y 1k ik .
RUM assumes that the utility of each alternative is the sum of the deterministic utility Vik and random utility ik:

= +U V z x( , )ik ik i i ik (1)

Individuals tend to select the maximum utility out of K alternatives with probabilities. The probability that individual i selects
alternative k is

= + > +P Prob V V j B j k( , , )ik ik ik ij ij (2)

Assuming that ik is independent and identically distributed across individuals and alternatives and that the cumulative distribution
function of ik is F ( )ik , the choice probability

= +P F V V dF( ) ( )ik j k ik ij ik ikij (3)

The following two propositions demonstrate how DNN and RUM are related. The proof of the two propositions is available in
Appendix I.
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Proposition 1. Suppose ik follows the Gumbel distribution, with probability density function equals to =f e e( )ik
eik ik and cumulative

distribution function equals to =F e( )ik
e ik. Then, the choice probability Pik takes the form of the Softmax activation function =Pik

e
e

Vik

j
Vij .

The proof is available in many choice modeling textbooks (Train, 2009; Ben-Akiva and Lerman, 1985).

Proposition 2. Suppose that Eq. (3) holds and that choice probability Pik takes the form of Softmax function as in Eq. (17). If ik is a
distribution with the transition complete property, ik follows the Gumbel distribution, with =F e( )ik

e ik.

The proof is available in Lemma 2 of McFadden (1974).
Propositions 1 and 2 illustrate the close relationship between RUM and DNN. When F-DNN is applied to the inputs xi and zi, the

implicit assumption is of RUM with a random utility term following the Gumbel distribution. The inputs into the Softmax function in
the DNN could be interpreted as utilities of alternatives. The Softmax function itself could be considered as a soft method of com-
paring utility scores. The DNN transformation prior to the Softmax function could be considered as the process of specifying utilities.
Formally, Vik in F-DNN follows:

= = = …V V z x w z x w g g g z x( , ) ( , ) ( )( , )ik i i k
T

i i k
T

m i i2 1 (4)

m is the number of layers of DNN; =g t ReLU W t( ) ( )l l
T and =ReLU t max t( ) (0, ). It is important to note that =V V z x( , )ik i i implies

that the utility of an alternative k is the function of the attributes of all the alternatives xi and the decision maker’s socio-economic
variables zi. Eq. (4) illustrates that Vik becomes alternative-specific only in the final layer prior to the Softmax function when wk is
applied to z x( , )i i .

3.2. Architecture of ASU-DNN

This utility insight enables us to design a DNN architecture with alternative-specific utility function, which is commonly assumed
in choice models. Fig. 2 shows the architecture of ASU-DNN. Herein, each alternative-specific xik and individual-specific zi undergo
transformation first, and zi enters the pathway of xik afterM1 layers. As a result, the utility of each alternative becomes only a function
of its own attributes xik and of the decision maker’s socio-demographic information zi. This ASU-DNN dramatically reduces the
complexity of F-DNN, while still capturing the heterogeneity of the utility function, which varies with the decision makers’ socio-
demographics. ASU-DNN could be considered as a stack of K subnetworks, interacting with socio-demographics zi. In addition, this
alternative-specific utility is equivalent to the constraint of independence of irrelevant alternative (IIA) in this DNN setting. This is
because the ratio of the choice probabilities of two alternatives no longer depends on other irrelevant alternatives. Formally, the
utility function in ASU-DNN becomes

= = = … … …V V z x w z x w g g g g g x g g z( , ) ( , ) ( )(( )( ), ( )( ))ik i ik k
T

i ik k
T

M M
x x

ik M
z z

i2 1 1 1
k k

2 1 1 (5)

This ASU-DNN architecture can potentially address the three challenges mentioned at the beginning of this work. First, this
architecture is a compromise between domain-specific knowledge and a generic-purpose DNN model. On the one hand, the design
permits only alternative-specific connectivity based on the utility theory, whereby the meta-architecture is handcrafted. On the other
hand, the fully connected layers in ASU-DNN exploit the automated feature learning capacity of DNN. Therefore, the sub-network in
ASU-DNN still uses the power of DNN as a universal approximator (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991). Secondly, this
alternative-specific connectivity design could provide more regular information than F-DNN owing to the underlying utility theory.
The two architectures in Figs. 1 and 2 are associated with different behavioral mechanisms. F-DNN implies that the utility of each
alternative depends on the other alternatives. A good example is the reference-dependent utilities: when people use the market
average price as a reference point, the utility of an alternative depends directly on other alternatives (Weaver and Frederick, 2009;
Dhami, 2016). Meanwhile, the baseline utility theory indicates that the utility of an alternative depends on only the attributes of that
alternative. Hence the comparison between the two architectures could be considered as a test between two behavioral mechanisms.
Thirdly, F-DNN has substantially more parameters than ASU-DNN does. When both the DNN architectures have 10 layers and
approximately 600 neurons in each layer, F-DNN has approximate three million parameters, whereas ASU-DNN has 0.5 million.
Therefore, the alternative-specific connectivity design could be considered as a sparse architecture that regularizes DNN models.
However, to formally evaluate the effectiveness of this regularization, the statistical learning theory is required to discuss the tradeoff
between the approximation and estimation errors, as shown in the next section.

Fig. 1. Fully Connected Feedforward DNN (F-DNN); it is a standard feedforward DNN. The inputs incorporate both alternative-specific and in-
dividual-specific variables. The inputs into the Softmax activation function can be interpreted as utilities.
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3.3. Estimation and approximation error tradeoff between ASU-DNN and F-DNN

It is not true that ASU-DNN can always outperform F-DNN. This is because any constraint applied to DNN could potentially cause
misspecification errors. Let 1 and 2 denote the model family of ASU-DNN and F-DNN; use f1 and f2 to denote the estimated decision
rules from ASU-DNN and F-DNN, and f to denote the true data generating process (DGP). The Excess error is:

= +L f L f L f L f L f L f f f f[ ( ) ( )] [ ( ) ( )] [ ( ) ( )], { , }; { , }S S F S F 1 2 1 2 (6)

where =L l y f x[ ( , ( )]x y, is the expected loss function and S represents the sample x y{ , }i i
N
1 . =f L fargmin ( )F f , the best function in

function class to approximate f . The excess error measures the average out-of-sample performance difference between the es-
timated function f and the true model f . The excess error can be decomposed as an estimation error

L f L f[ ( ) ( )]S F (7)

And an approximation error

L f L f[ ( ) ( )]S F (8)

Formally, the statistical learning theory could demonstrate that ASU-DNN outperforms F-DNN owing to the smaller estimation
error of ASU-DNN. However, F-DNN could possibly outperform ASU-DNN owing to the smaller approximation error of F-DNN. When
ASU-DNN and F-DNN have equal width and depth, the approximation error of ASU-DNN ( 1) is larger:

L f L f L f L f[ ( ) ( )] [ ( ) ( )],S S 1 21 2 (9)

This is intuitive because f
1
also belongs to model family 2 and thus f

2
could outperform f

1
in terms of approximating the true

model f . A more challenging question is regarding the estimation errors, the proof of which relies on the empirical process theory
that uses Rademacher complexity as an upper bound.

Definition 1. Empirical Rademacher complexity of function class is defined as:

=
=N

f x( | ) sup 1 ( )n S f
i

N

i i
1 (10)

i is the Rademacher random variable, taking values +{ 1, 1} with equal probabilities.

Proposition 3. The estimation error of an estimator f can be bounded by the Rademacher complexity of .

L f L f[ ( ) ( )] 2 ( | )S F S n S (11)

Definition 1 provides a measurement for the complexity of the function class . Proposition 3 implies that the estimation error is
controlled by the complexity of . This is consistent with traditional wisdom that the estimation error increases when the number of

Fig. 2. ASU-DNN; Deep neural network architecture based on utility theory. It could be considered as a stack of fully connected subnetworks, with
each computing a utility score for each alternative. Individual-specific variables interact with alternative-specific variables after M1 layers.
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parameters in a model is larger. Details of Definition 1 and Proposition 3 are available in recent studies about the statistical learning
theory (Vershynin, 2018; Wainwright, 2019; Bartlett and Mendelson, 2002).

Proposition 4. Let Hd be the class of neural network with depth D over the domain , where each parameter matrix Wj has the Frobenius
norm at most M j( )F , and with ReLU activation functions. Then

+
×=

=

D x

N
M j( | )

( 2log( ) 1) || ||
( )n S

N
i

N

i

j

D

F

1

1

2

1 (12)

Remarks on Proposition 4:

1. As this result is from Golowich et al. (2017), so its proof is omitted in this study. Other relevant proofs are available in Bartlett and
Mendelson (2002), Neyshabur et al. (2015), Anthony and Bartlett (2009).

2. Proposition 4 indicates that the estimation error of DNN is a function of the depth D, Frobenius norm of each layerM j( )F , diameter
of x, and sample size N.

3. Unlike traditional results based on VC-dimension (Vapnik, 1999; Bartlett et al., 2017), this upper bound relies on the norm of
coefficients in each layer, which can be controlled by l1 or l2 regularizations, rather than the number of parameters.

4. Suppose the width of DNN is T and each entry in Wj is at most c. The upper bound of F-DNN ( 2) in Proposition 4 can be re-
expressed as:

+
×=

D x

N
c T( | )

( 2log( ) 1) || ||

n S

N
i

N

i
D D

2

1

1

2

(13)

Proposition 5. Suppose ASU-DNN has a total depth D over the domain , wherein each entry in the matrix Wj is at most c and the width
=T KTx . K is the number of alternatives in each choice scenario and Tx is the width of each sub-network.1 With ReLU activation functions

+
×=

D x

N
c T
K

( | )
( 2log( ) 1) || ||

n S

N
i

N

i
D D

D1

1

1

2

/2 (14)

Remarks on Proposition 5:

1. Proposition 5 can be derived from Proposition 4 by plugging in the coefficient matrix of each layer in ASU-DNN.
2. The estimation error of ASU-DNN ( 1) shrinks by a factor of O K( )D/2 compared to F-DNN ( 2), implying that ASU-DNN performs
better than F-DNN as K or D increases.

Eqs. (6)–(14) constitute the formal method for illustrating the tradeoff between ASU-DNN and F-DNN. Owing to its sparse
connectivity, ASU-DNN has smaller estimation error as its main advantage, particularly when K is large, as shown in Eq. (14).
Meanwhile, the larger approximation error could be the main disadvantage of ASU-DNN. When the alternative-specific utility
constraint is not true in reality, this constraint could be excessively restrictive, resulting in a low model performance. This problem is
also commonly acknowledged in the field of choice modeling, although framed in a different way. Because the alternative-specific
utility function in this DNN setting indicates the IIA constraint, the large approximation error of ASU-DNN could be equivalently
framed as a problem of IIA being too restrictive. This drawback appears unavoidable in the approach wherein DNN’s interpretability
is improved ex-ante. This is because any prior knowledge may be too restrictive in reality. However, compared to classical choice
modeling methods that rely exclusively on handcrafted feature learning, misspecification in ASU-DNN is less problematic because it is
robust to utility specification conditioning on the alternative-specific utility constraint. In addition, Eqs. (13) and (14) indicate that the
estimation error gap between ASU-DNN and F-DNN could reduce as the sample size increases. Overall, the trade-off between ASU-
DNN and F-DNN involves complex dynamics between true models, sample size, number of alternatives, and regularization strength.
To compare their performance, we need to apply them to real choice datasets.

1 This assumption simplies the ASU-DNN by omitting the socioeconomic inputs, because adding socioeconomic inputs into this proposition does not change
our main conclusion.
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4. Setup of experiments

4.1. Datasets

Our experiments are based on two datasets, an online survey data collected in Singapore with the aid of a professional survey
company and a public dataset in R mlogit package. They are referred to as SGP and TRAIN, respectively, in this study. The SGP survey
consisted of a section of choice preference and a section for eliciting socioeconomic variables. At the beginning, all the respondents
reported their home and working locations and present travel mode. After obtaining the geographical information, our algorithm
computed the walking time, waiting time, in-vehicle travel time, and travel cost of each travel mode based on the origin and
destination provided by the participants and the price information collected from official data sources in Singapore. The SGP and
TRAIN datasets include 8, 418 and 2, 929 observations. In the SGP dataset, the output yi represents the travel mode choice among
walking, public transit, driving, ride sharing, and autonomous vehicles (AV); alternative-specific inputs xik are the attributes of each
travel mode, such as price and time cost; and individual-specific inputs zi are the attributes of decision-makers, such as their income
and education backgrounds. In the TRAIN dataset, yi represents the binary travel mode choice between two different types of trains;
the alternative-specific input xik represents the price, time cost, and level of comfort; and no zi exists for the TRAIN dataset. Both of
the datasets are divided into training, validation, and testing sets in the ratio 4: 1: 1. Fivefold cross-validation is used for the model
selection, and the model evaluation is based on both the validation and testing sets. Detailed summary statistics of TRAIN and SGP are
attached in Appendix II.

4.2. Hyperparameter space

A challenge in the comparison between the two DNN architectures is the large number of hyperparameters, on which the per-
formance of DNN largely depends. Table 1 summarizes a list of hyperparameters and the range of their values. The hyperparameters
consist of invariant ones, varying ones specific to F-DNN or ASU-DNN, and varying ones shared by F-DNN and ASU-DNN. The
difference between F-DNN and ASU-DNN is referred to as alternative-specific connectivity hyperparameter, which plays a similar role
as the other hyperparameters do because it changes the architecture of DNN, controls the number of parameters, and performs
regularization.
A brief introduction for some hyperparameters is as following. Activation Functions. Rectified linear unit (ReLU) is used in the

middle layers and Softmax is used in the last layer. Other activation functions are also possible, although recent studies have shown
that non-saturated activation functions (e.g. ReLU) perform better than the saturated activation functions (e.g. Tanh) (Krizhevsky

Table 1
Hyperparameter space of F-DNN and ASU-DNN; Panel 1. Hyperparameters that don’t
change in the hyperparameter searching; Panel 2. Hyperparameters that change in
only F-DNN; Panel 3. Hyperparameters that change in only ASU-DNN; M1 and n1 are
the depth and width before the interaction between xik and zi. Panel 4.
Hyperparameters that change in both F-DNN and ASU-DNN.

Hyperparameters Values

Panel 1. Invariant Hyperparameters
Activation functions ReLU and Softmax
Loss Cross-entropy
Initialization He initialization

Panel 2. Varying Hyperparameters of F-DNN
M [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Width n [60, 120, 240, 360, 480, 600]

Panel 3. Varying Hyperparameters of ASU-DNN
M1 [0, 1, 2, 3, 4, 5, 6]
M2 [0, 1, 2, 3, 4, 5, 6]
Width n1 [10, 20, 40, 60, 80]
Width n2 [10, 20, 40, 60, 80, 100]

Panel 4. Varying Hyperparameters of F-DNN and ASU-DNN
1 (l1 penalty) [1.0, 0.5, 0.1, 0.01, 10 , 10 , 10 , 10 ]3 5 10 20

2 (l2 penalty) [1.0, 0.5, 0.1, 0.01, 10 , 10 , 10 , 10 ]3 5 10 20

Dropout rate [0.5, 0.1, 0.01, 10 , 10 ]3 5

Batch normalization True False[ , ]
Learning rate [0.5, 0.1, 0.01, 10 , 10 ]3 5

Num of iteration [500, 1000, 5000, 10000, 20000]
Mini-batch size [50, 100, 200, 500, 1000]
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et al., 2012). Initialization. It refers to the process of initializing the parameters in DNN. DNN initialization does not have formal
theory yet, although Glorot and He initializations are commonly used in practice (Glorot and Bengio, 2010; Glorot et al., 2011; He
et al., 2015). Depth and Width. They refer to the number of layers and the number of neurons in each layer of DNN. Depth and width
control the model complexity: DNN models have smaller approximation errors and larger estimation errors, when they become wider
and deeper. Penalties. Both l1 and l2 penalties are explicit regularization added to the standard cross-entropy loss function. The l1
penalty encourages model sparsity; the l2 penalty shrinks the magnitude of coefficients. Dropout. It refers to the process of randomly
dropping certain proportion of the neurons in training (Hinton et al., 2012), and since this procedure leads to sparser architecture, it
can also be treated as a regularization method. Batch Normalization. It is the normalization of each batch in the stochastic gradient
descent (SGD). Number of Iterations. It refers to the number of iterations in the training. Too few training iterations could lead to an
underfitted model and too many iterations could lead to an overfitted model. As a result, a relatively small number of iterations (e.g.
early stopping) can be considered as a regularization method.

4.3. Hyperparameter searching

It is a benchmark method to randomly search in the hyperparameter space to identify the DNN configuration with a high pre-
diction accuracy (Bergstra and Bengio, 2012). In our study, 100 DNN models were trained, 50 each for the two DNN architectures.
Formally, the empirical risk minimization (ERM) is

= +E w w
N

l y P w w wmin ( , ) min 1 ( , ; , ) || ||w h w
i

N

i ik h p
(15)

in which w represents parameters; wh represents hyperparameters; l () is the cross-entropy loss function, and w|| ||p represents lp

penalty. Suppose w minimizes E w w( , )h conditioning on one specific wh. By randomly sampling wh
s( ), we could identify the best

hyperparameter wh

= …w E w wargmin ( , )h w w w w h{ , , , }h h h h
S(1) (2) ( ) (16)

5. Experiment results

The result section consists of three parts. The first part compares the prediction accuracy of ASU-DNN, F-DNN, MNL, NL, and
other nine ML classifiers. The second part evaluates how effective the alternative-specific connectivity is as a regularization method,
as opposed to other generic-purpose regularization methods. The final part compares ASU-DNN, F-DNN, MNL, and NL in terms of
their interpretability by visualizing their choice probability functions and computing their elasticity coefficients. The first part uses
both SGP and TRAIN datasets, and the second and third parts focus on only the SGP dataset for simplicity.

5.1. Prediction accuracy

Fig. 3 summarizes the prediction accuracy of the top 30 models in the validation and the testing sets in the SGP and TRAIN
datasets. All the four figures illustrate that ASU-DNN performs better than F-DNN does, although there are marginal differences
between the SGP and TRAIN datasets.2 In the SGP dataset, the prediction accuracy of ASU-DNN in the first 15 out of the visualized 30
models is approximately 0.5% higher than that of F-DNN. Moreover, the difference in prediction accuracy increases as the models’
prediction accuracy increases. The top 10 ASU-DNNs outperform the top 10 F-DNNs by approximately 2 3% prediction accuracy in
both validation and testing sets. The best ASU-DNN outperforms the best F-DNN by approximately 3%. In the TRAIN dataset, whereas
the ASU-DNN still consistently outperforms F-DNN, the gap is smaller in its top 10 models. The first 15 out of the visualized 30 ASU-
DNN models outperform the F-DNN models by 2 3% of prediction accuracy, whereas the top 10 ASU-DNNs outperform F-DNN by
only 0.5%. An outlier case is the top 1 model in the testing set of TRAIN; herein, the prediction accuracy of F-DNN is marginally higher
than that of ASU-DNN. Nonetheless, it is evident that in nearly all the cases, ASU-DNN consistently performs higher than F-DNN does
in the whole hyperparameter space.
Table 2 also illustrates that both F-DNN and ASU-DNN perform better than the other eleven classifiers, implying that DNN models

fit choice analysis tasks very effectively. Specifically, F-DNN and ASU-DNN outperform the baseline MNL and NL by about 8%
prediction accuracy, implying that the compositional function structure of DNN is effective. Because the prediction accuracy gap
between ASU-DNN and F-DNN is identified by using random sampling from the hyperparameter space, we could attribute this gain in
prediction accuracy to only the alternative-specific connectivity design and not to any other regularization method. In addition, from
the perspective of the behavioral test, the better performance of ASU-DNN than F-DNN indicates that the utility of an alternative was
computed based on its own attributes rather than the attributes of all the alternatives.

2 Here we focus on only the top models since researchers only choose the top ML models for analysis. For example, researchers compare the top 1
model or the top 5 models in two different model families, so we don’t discuss the mean or the variance of the models’ performance.
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5.2. Alternative-specific connectivity design and other regularizations

We further examine whether the alternative-specific connectivity hyperparameter is more effective than the other hyperpara-
meters, including explicit regularizations, implicit regularizations, and architectural hyperparameters. Fig. 4 shows the results, with
each of the subfigures depicting the comparison of a hyperparameter with the alternative-specific connectivity hyperparameter.

Explicit regularizations. Fig. 4 a and b show how the prediction accuracy varies with the alternative-specific connectivity
hyperparameter and two hyperparameters of explicit regularizations: l1 and l2 penalties. The 2 3% prediction accuracy gain by ASU-
DNN is retained across the different values of the l1 and l2 regularizations. When the l1 penalty is smaller than 10 5 and l2 penalty is
smaller than 10 3, ASU-DNN exhibits consistently higher prediction accuracy than F-DNN does. The l1 and l2 regularizations fail to aid
in achieving a higher prediction accuracy by either ASU-DNN and F-DNN, as illustrated by the nearly flat maximum prediction
accuracy curve when l1 and l2 values are small and a large decrease in the prediction accuracy as l1 and l2 increase, in both Fig. 4 a and
b. In other words, the most commonly used l1 and l2 regularizations cannot aid model prediction, or at least they are less effective than
the alternative-specific connectivity hyperparameter.

Implicit regularizations. Fig. 4c, d, e, and f show the relationship between the alternative-specific connectivity hyperparameter
and four implicit regularizations: learning rates, number of total iterations, size of mini batch, and batch normalization. These
regularization methods are implicit because they are not explicitly used in the empirical risk minimization in Eq. (15), although they
have impacts on model training through the computational process. Again, the prediction accuracy gain owing to the alternative-
specific connectivity is highly robust regardless of the values of the other four hyperparameters: in all four figures, the dashed green

(a) SGP Validation (b) SGP Testing

(c) TRAIN Validation (d) TRAIN Testing

Fig. 3. Hyperparameter Searching Results; in all four subfigures, models are sorted according to prediction accuracy. Green curves represent ASU-
DNN performance, and red ones represent F-DNN. Dark curves are the average of fivefold cross-validation, and light ones are the individual
trainings. Overall, ASU-DNN consistently outperforms F-DNN. The information of top DNN architectures is attached in Appendix III.
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curves are always placed higher than the dashed red curves are. In Fig. 4c, both green and red curves assume a marginally concave
quadratic form. The learning rates associated with the highest prediction accuracies are between 10 3 and 10 2, which are the default
values in Tensorflow. This concave quadratic shape is intuitive because highly marginal learning rates are generally inadequate for
achieving the optimum values and very large learning rates generally overshoot. In Fig. 4 d, e, and f, the dashed and solid curves of
both F-DNN and ASU-DNN are nearly horizontal. This indicates that the number of iterations, size of mini batches, and batch
normalization are immaterial for improving DNN’s prediction accuracy in choice modeling tasks.

Architectural hyperparameters. Fig. 4g, h, and i compare the alternative-specific connectivity hyperparameter to three ar-
chitectural hyperparameters: depth and width of DNN, and dropout rates. Similarly, the 2 3% prediction accuracy gain remains
over approximately the whole range of the architectural hyperparameters. In Fig. 4g, the green dashed line is consistently higher than
the red dashed line for the majority of the M values (from three to ten). However, this result is not exactly true when the depth of
DNN is very small or very large. It is worthnoting that the model performance increases dramatically from one-layer to three-layer
ASU-DNN. This indicates that the IIA constraint is less restrictive than the linear specification of each alternative’s utility conditioning
on the IIA constraint. In Fig. 4h, the maximum prediction accuracy of F-DNN form almost horizontal lines everywhere. Finally, in
Fig. 4i, whereas the prediction accuracy difference remains approximately 2 3% for most of the values of the dropout rate, this
difference becomes approximately 10% when the dropout rate is larger than 0.1. The prediction accuracy of ASU-DNN increases
marginally as the dropout rates increase, whereas that of F-DNN decreases. These results imply that the alternative-specific

Fig. 4. Comparing alternative-specific connectivity to explicit regularizations, implicit regularizations, and architectural hyperparameters in the
SGP testing dataset; First row: Explicit regularizations; Second row: Implicit regularizations; Third row: Architectural hyperparameters. In all the
subfigures, the x-axis represents the hyperparameter and the y-axis represents the prediction accuracy. The dashed lines connect the models with the
highest prediction accuracy for each single value of the hyperparameter on the x-axis. The solid curves are the quadratic regression curves of
prediction accuracy on the hyperparameter on the x-axis. The maximum prediction accuracy (dashed curves) is more important than the average
accuracy (solid curves) because we target only top models rather than average models. The results for the validation set are available in Appendix
IV. Overall, ASU-DNN could outperform F-DNN regardless of the values of the other hyperparameters.
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connectivity exerts an interaction effect of activating architectural hyperparameters, in addition to its first order effects of 2 3%
prediction gain.

5.3. Interpretation of ASU-DNN: combining IIA and DNN

Whereas DNN is generally criticized as lacking interpretability, we can visualize the choice probability functions and compute the
elasticity coefficients in DNN models by using numerical simulation (Baehrens, 2010; Bentz and Merunka, 2000; Montavon et al.,
2018; Slavin Ross and Doshi-Velez, 2018; Wang et al., 2018). Fig. 5 shows how, following this method, the probabilities of selecting
five travel modes vary with increasing driving costs in the ASU-DNN, F-DNN, MNL, and NL models, while holding all other variables
constant at their empirical mean values.
The choice probability functions of ASU-DNN mix the behavioral patterns of MNL and F-DNN, since ASU-DNN retains the global

IIA-constraint substitution pattern from MNL and the local richness from F-DNN. Comparing ASU-DNN and F-DNN, the choice
probability functions of ASU-DNN appear more intuitive than those of F-DNN for at least two reasons. The first difference is with

(a) MNL (b) ASU-DNN (Top 1 Model) (c) ASU-DNN (Top 10 Models)

(d) NL (e) F-DNN (Top 1 Model) (f) F-DNN (Top 10 Models)

Fig. 5. Choice probability functions of MNL, NL, ASU-DNN, and F-DNN in the SGP testing set. Upper row:MNL and ASU-DNN models. Lower row: NL
and F-DNN models. Each light curve represents a training result; the dark curves represent the average of all the training results. ASU-DNN
compromises MNL and F-DNN, since it retains the global IIA-constraint substitution pattern of MNL and the local richness of F-DNN.

Table 3
Elasticity coefficients of MNL.

Walk Bus Ridesharing Drive AV

Walk: walk time −1.890 0.134 0.134 0.134 0.134
Bus: cost 0.137 −0.546 0.137 0.137 0.137
Bus: in-vehicle time 0.128 −0.475 0.128 0.128 0.128
Ridesharing: cost 0.029 0.029 −0.240 0.029 0.029
Ridesharing: in-vehicle time 0.083 0.083 −0.740 0.083 0.083
Drive: cost 0.288 0.288 0.288 −0.793 0.288
Drive: in-vehicle time 0.280 0.280 0.280 −0.440 0.280
AV: cost 0.048 0.048 0.048 0.048 −0.449
AV: in-vehicle time 0.060 0.060 0.060 0.060 −0.560
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regard to the substitution pattern between the five travel modes; specifically, F-DNN predicts that the probability of catching buses
will decrease dramatically as the driving cost increases beyond "$"15, whereas ASU-DNN predicts that this probability will increase
marginally. The substitute effect between driving and catching buses predicted by ASU-DNN appears to be more reasonable, con-
sistent with the common notion that the alternatives are often substitute goods. Note that the substitution pattern of travel modes in
ASU-DNN describes that individuals could switch from driving to the other modes in a proportional manner, which is similar to the
MNL model in Fig. 5a. The second difference between ASU-DNN and F-DNN is in the probability of selecting driving as the driving
costs approach zero. ASU-DNN predicts that individuals exhibit 70% probability of selecting driving when driving costs become zero,
whereas F-DNN predicts this probability being close to 100%. The latter value appears unreasonable because all the other variables
including driving time is fixed as the mean value of the sample, resulting in the likelihood of the selection of alternative travel modes.
Overall, ASU-DNN presents more regularity than F-DNN, which is caused by the built-in alternative-specific connectivity design.
Tables 3–6 summarize the elasticity coefficients for the MNL, NL, top 10 ASU-DNN, and top 10 F-DNN models, with negative

values being bolded to highlight the structure in each table. These elasticity coefficients are computed by simulation, with each input
variable varied by 1% holding all the other variables constant at the sample mean values. As shown in Table 3, the MNL model clearly
reveals its IIA substitution pattern in two ways. First, all the self-elasticity coefficients are negative as highlighted on the main
diagonal, while the cross-elasticity coefficients are all positive. Second, the four cross-elasticity coefficients regarding one specific
attribute have the same magnitude. For example, regarding the walking time, the cross-elasticity coefficients of taking buses, ride-
sharing, driving, and using AVs are all 0.134, which is consistent with the elasticity formula of MNL models.3 Table 4 demonstrates

Table 4
Elasticity coefficients of NL. Nest 1: walk and bus. Nest 2: ridesharing, drive, and AV.

Walk Bus Ridesharing Drive AV

Walk: walk time −1.481 −0.067 0.163 0.163 0.163
Bus: cost −0.074 −0.550 0.170 0.170 0.170
Bus: in-vehicle time −0.050 −0.356 0.116 0.116 0.116
Ridesharing: cost 0.039 0.039 −0.488 0.080 0.080
Ridesharing: in-vehicle time 0.073 0.073 −0.988 0.146 0.146
Drive: cost 0.229 0.229 0.424 −0.905 0.424
Drive: in-vehicle time 0.269 0.269 0.482 −0.593 0.482
AV: cost 0.048 0.048 0.093 0.093 −0.687
AV: in-vehicle time 0.057 0.057 0.109 0.109 −0.800

Table 5
Average elasticity coefficients of top 10 ASU-DNN Models.

Walk Bus Ridesharing Drive AV

Walk: walk time −10.016 1.029 1.028 1.029 1.030
Bus: cost 0.381 −1.983 0.395 0.396 0.391
Bus: in-vehicle time 0.440 −3.198 0.438 0.435 0.436
Ridesharing: cost 0.219 0.221 −2.638 0.221 0.223
Ridesharing: in-vehicle time 0.420 0.421 −4.878 0.420 0.420
Drive: cost 1.709 1.735 1.726 −2.249 1.731
Drive: in-vehicle time 2.138 2.172 2.178 −1.952 2.171
AV: cost 0.383 0.379 0.380 0.380 −4.681
AV: in-vehicle time 0.364 0.362 0.363 0.362 −3.485

Table 6
Average elasticity coefficients of top 10 F-DNN Models.

Walk Bus Ridesharing Drive AV

Walk: walk time −4.228 0.580 0.447 0.172 0.109
Bus: cost −0.696 −2.052 −0.093 0.623 0.342
Bus: in-vehicle time −0.053 −1.803 −0.339 0.502 0.588
Ridesharing: cost 0.055 0.292 −1.858 0.142 1.457
Ridesharing: in-vehicle time −0.139 −0.115 −3.436 0.434 0.268
Drive: cost 0.897 1.404 2.079 −1.711 1.474
Drive: in-vehicle time 1.266 1.690 2.164 −1.748 1.937
AV: cost −0.516 0.036 0.356 0.443 −3.781
AV: in-vehicle time −0.769 0.457 0.074 0.360 −3.288

3 Please refer to Chapter 3 in Train’s textbook (Train, 2009).
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how a NL model has a more flexible substitution pattern than MNL. The elasticity coefficients take a clear block-wise shape and the
values within a nest are different from those cross nests.
The elasticity coefficients in Table 5 shows that the substitution pattern of ASU-DNN is very similar to MNL in Table 3. The

similarity can be seen from the positive self-elasticity coefficients on the main diagonal, the negative cross-elasticity coefficients on
the off-diagonal, and the same cross-elasticity coefficients regarding one specific attribute. This similarity should not be a surprise,
since the ASU-DNN in the family of DNN models corresponds to the MNL in the family of discrete choice models, owing to the
alternative-specific utility functions in ASU-DNN. As a comparison, the elasticity coefficients of F-DNN in Table 6 are much more
irregular than those of ASU-DNN and even NL: many cross-elasticity coefficients are negative and the elasticity coefficients don’t have
the block-wise pattern as in NL. Note that this “irregularity” in F-DNN does not necessarily have a negative connotation. It can be the
case that the elasticity pattern in F-DNN captures the real data generating process that is out of the model families of MNL, NL, or
even ASU-DNN. Therefore, F-DNN might enable researchers to capture the highly correlated utility errors, as in mixed logit (MXL)
models. However, it is hard to make a definitive judgment by using only our empirical results. We leave these two questions, whether
F-DNN describes the highly correlated utility error terms (as in MXL) and whether the behavioral patterns revealed in ASU-DNN and
F-DNN are realistic, open to future studies.

6. Conclusion and discussion

This study is motivated by the challenges in the application of DNN to choice analysis, including the tension between domain-
specific knowledge and generic-purpose models, and the lack of interpretability and effective regularization methods. In contrast to
most of the recent studies in the transportation domain that straightforwardly apply various DNN models to choice analysis, we
demonstrate that the benefit could flow in the other direction: from domain knowledge to DNN models. Specifically, it is feasible to
inject behavioral insights into DNN architecture owing to the implicit RUM interpretation in DNN. By using the alternative-specific
utility constraint, we design a new DNN architecture ASU-DNN, which achieves a certain compromise between domain-specific
knowledge and generic-purpose DNN, and between the handcrafted feature learning and automatic feature learning paradigms. This
compromise is significantly effective, as demonstrated by our empirical results that ASU-DNN model is more predictive and provides
more regular behavioral information than F-DNN. ASU-DNN could outperform F-DNN by approximately 2 3% in both validation
and testing data sets regardless of the values of DNN’s other hyperparameters. The behavioral insights from ASU-DNN are also more
reasonable than those from F-DNN, as shown in the choice probability functions of the five travel modes. Theoretically, this alter-
native-specific utility specification leads to the IIA constraint, which can be considered as a regularization method under the DNN
framework. This constraint causes the DNN architecture to be sparser, resulting in a lower estimation error. This insight is supported
by our empirical result, because the alternative-specific utility constraint as a domain-knowledge-based regularization is more ef-
fective than other explicit and implicit regularization methods, and architectural hyperparameters. In addition, the comparison
between ASU-DNN and F-DNN could function as a behavioral test, and our results indicate that individuals are more likely to
compute the utility based on an alternative’s own attributes rather than the attributes of all the alternatives. This finding is consistent
with the long-standing practice in choice modeling.
One natural question is to what extent our findings are generalizable. This ASU-DNN model is guaranteed to have the IIA-

constraint substitution pattern, smaller estimation errors than F-DNN, and more flexibility and higher function approximation power
than MNL. These results are always generaliable, owing to the design of ASU-DNN architecture. However, it is neither theoretically
nor empirically guaranteed that ASU-DNN always outperforms F-DNN and MNL in terms of prediction accuracy. The prediction
performance depends on the sample size, model complexity, and the underlying data generating process (DGP) that is never known to
researchers in empirical studies. Loosely speaking, ASU-DNN tends to perform better than F-DNN when sample size becomes smaller,
DGP is closer to the IIA-constraint substitution pattern, and the number of alternatives in the choice set becomes larger. ASU-DNN
tends to outperform MNL when the utility specification of each alternative is more complicated than simple linear or quadratic forms,
although both ASU-DNN and MNL will have misspecification errors when the true DGP deviates from the alternative-specific utility
specification. Related to this generalizability discussion, another open question is whether the behavioral pattern revealed in ASU-
DNN is realistic. Unfortunately this realism question is hard to answer given that the DGP is never known to researchers in empirical
studies. Instead of making a value judgment here, we would encourage future studies to use simulations to answer under what
conditions ASU-DNN can approximate the true DGP in a more efficient manner than both F-DNN and MNL.
The alternative-specific utility specification can be incorrect in ASU-DNN. However, it is important to note that this problem exists

in any modeling practice because any prior knowledge could be incorrect. The method of using prior knowledge in ASU-DNN is
fundamentally different from that in traditional choice models. ASU-DNN starts with a universal approximator F-DNN as a baseline
and “builds downward” F-DNN by using only a piece of prior knowledge (alternative-specific utility in this study) to reduce the
complexity of F-DNN. In contrast, traditional choice modeling starts from scratch as a baseline and “builds upwards” a choice model
by using all types of prior knowledge (e.g. linearity and additivity of utilities). The former is a significantly more conservative method
of using prior knowledge. As a result, the downward-built models are more robust to the function misspecification problem.
The ASU-DNN in the family of DNN models is the counterpart of the MNL in the family of discrete choice models. This mapping is

enabled by a triangle relationship between the IIA-constraint substitution pattern, choice probability functions taking the Softmax
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form, and the IID error terms with extreme value distributions. This triangle relationship was neatly established in McFadden’s
seminal paper (McFadden, 1974), which demonstrates any one of the three conditions leads to the other two under the RUM fra-
mework. However, the triangle relationship does not explicitly exist for choice models beyond MNL. Whereas researchers can derive
the choice probability functions of NL based on the generalized extreme value (GEV) distributions, the proof of the reversed direction
is unclear. The mixed logit (MXL) model that allows more flexible correlation between the utility error terms is even more com-
plicated, since the choice probabilities in MXL are computed by sampling, which deviates further away from any analytical approach.
Our study has empirically demonstrated that the elasticity coefficients of F-DNN are more flexible than NL as shown in Tables 4 and 6,
leading to our conjecture that there exists another regularized DNN model that is corresponding to the NL or GEV models. A valid
support for this conjecture is beyond the scope of this study, and we hope future studies can identify the regularization methods that
are associated with the NL or even MXL models.
Regardless of certain caveats and remaining questions, our results are promising because they present a solution to many chal-

lenges in DNN applications. More importantly, it indicates a new research direction of using utility theory to design DNN archi-
tectures for choice models, which could become more predictive owing to lower estimation errors and be more interpretable owing to
the knowledge introduced into DNN as regularization. We consider that this research direction has immense potential because both
utility theory and DNN architectures are exceptionally rich and active research fields. The alternative-specific utility connectivity is
only a tiny piece among a vast number of insights in utility theory. Therefore, the immediate next steps could be to use more flexible
utility functions (such as those in NL and MXL) to design novel DNN architectures. Future researchers should also examine the
generalizability of ASU-DNN by testing whether it can perform better than F-DNN and choice models in other contexts.
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Appendix A. Proof of Propositions 1 and 2

Proof of Proposition 1. This proof can be found in all choice modeling textbooks (Train, 2009; Ben-Akiva and Lerman, 1985).
With Gumbel distributional assumption, Eq. (3) could be solved in an analytical way:
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in which the fourth equation uses =t e ik. Note this formula in Eq. (17) is the Softmax function in DNN. Vik is both the deterministic
utility in RUM and the inputs into the Softmax function in DNN.

Proof of Proposition 2. This proof can be found in Lemma 2 of McFadden (1974). Here is a brief summary of the proof. Suppose
that one individual i firstly chooses between alternative k and T alternatives j. Then according to Eqs. (3) and (17),
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Suppose that the individual i chooses between alternatives k and alternative l in another choice scenario, and alternative l is con-
structed such that =Te eV Vij il. Then
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By construction, Eqs. (18) and (19) are equivalent
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Since F ( ) is transition complete, meaning that + =a Eh a, ( ) 0 implies =h ( ) 0, , it implies

=F V log T F V V T( ) ( ) , ,ik ik
T

ik

Taking =V 0ik implies =F log T e( ) T . Taking =V log T log Lik implies =F log L F log T L( ) ( / )T . Hence
= =F log T L F log L e( / ) ( ) T L T1/ / . Therefore, =F e( ) e . This is the function of Gumbel distribution when = 1.
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Appendix B. Summary statistics of SGP and TRAIN

Tables 7 and 8.

Appendix C. Top Five DNN Architectures

Table 9.

Table 8
Summary Statistics of TRAIN data set.

Variables

Name Mean Std. Name Mean Std.

Choice1: price (guilders) 3368.3 1296.6 Choice2: price (guilders) 3367.7 1274.3
Choice1: time (min) 127.52 29.13 Choice2: time (min) 127.17 27.96
Choice1: number of changes 0.664 0.733 Choice2: number of changes 0.681 0.743
Choice1: comfort level (0,1 or 2) 0.899 0.602 Choice2: comfort level (0,1 or 2) 0.885 0.617

Statistics
Number of samples 2928
Number of choices Choice1: 1473 (50.31%); Choice2: 1455 (49.69%)

Table 9
Top 5 DNN structures in the SGP data set

F-DNN ASU-DNN

Rank 1 2 3 4 5 1 2 3 4 5
Accuracy (validation) 0.615 0.612 0.609 0.608 0.607 0.651 0.636 0.634 0.633 0.632
M 4 2 3 3 11 – – – – –
Width n 600 250 350 350 350 – – – – –
M1 – – – – – 5 5 2 3 1
M2 – – – – – 3 1 1 5 1
Width n1 – – – – – 100 100 60 100 60
Width n2 – – – – – 60 100 40 80 40

1 (l1 penalty) 10 10 10 20 10 5 10 5 10 5 10 5 10 10 10 5 10 10 10 20

2 (l2 penalty) 10 20 10 10 10 5 10 5 10 10 10 20 10 20 10 20 10 3 10 10

Dropout rate 10 3 10 5 10 3 10 3 10 5 10 3 0.1 10 3 0.1 10 3

Batch normalization True False True True False True True False True True
Learning rate 0.01 10 3 10 3 10 3 10 4 0.01 10 3 0.01 10 4 0.01
Num of iteration 10000 500 5000 5000 20000 20000 500 5000 20000 20000
Mini-batch size 200 500 500 500 100 500 500 200 50 1000

Table 7
Summary Statistics of SGP data set.

Variables Variables

Name Mean Std. Name Mean Std.

Male (Yes = 1) 0.383 0.486 Age < 35 (Yes = 1) 0.329 0.470
Age > 60 (Yes = 1) 0.075 0.263 Low education (Yes = 1) 0.331 0.471
High education (Yes = 1) 0.480 0.500 Low income (Yes = 1) 0.035 0.184
High income (Yes = 1) 0.606 0.489 Full job (Yes = 1) 0.602 0.490
Walk: walk time (min) 60.50 54.88 Bus: cost ($SG) 2.070 1.266
Bus: walk time (min) 11.96 10.78 Bus: waiting time (min) 7.732 5.033
Bus: in-vehilce time (min) 25.06 18.91 RideSharing: cost ($SG) 14.48 11.64
RideSharing: waiting time (min) 7.108 4.803 RideSharing: in-vehilce time (min) 18.28 13.39
AV: cost ($SG) 16.08 14.60 AV: waiting time (min) 7.249 5.674
AV: in-vehilce time (min) 20.11 16.99 Drive: cost ($SG) 10.49 10.57
Drive: walk time (min) 3.968 4.176 Drive: in-vehilce time (min) 17.43 14.10

Statitics

Number of samples 8418
Number of choices Walk: 874 (10.38%); Bus: 1951 (23.18%); RideSharing: 904 (10.74%); Drive 3774 (44.83%); AV: 915 (10.87%)
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Appendix D. Alternative-Specific Connectivity Design and Other Reglarizations in SGP Validation Set

Fig. 6 compares the alternative-specific connectivity regularization to other regularization methods in the validation set of SGP.
The results are very similar to Fig. 4.
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